Unusual ϵ/γ -Regiospecificity of (E/Z)-Pentadienyltin in the Lewis Acidpromoted Reaction with an Aldehyde

Yutaka Nishigaichi,* Manabu Fujimoto and Akio Takuwa

Department of Chemistry, Faculty of Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690, Japan

In the Lewis acid-promoted reaction between pentadienyltin (PDT) and an aldehyde, (*E*)- and (*Z*)-PDTs exhibit opposite regioreactivities: (*E*)-PDT reacts at the terminal ε -position and (*Z*)-PDT at the internal γ -position.

Pentadienyl-tin (PDT)¹ and -silane (PDS)² are stable pentadienyl nucleophiles which are important reagents for the introduction of a conjugated diene moiety into electrophiles.³ As vinylogues of allyl-tin and -silane possessing an extended conjugated system, PDT and PDS react at their terminal ϵ -position;^{2.4} this behaviour parallels that of their allylic congeners which react at their terminal γ -position via an S_E' pathway in Lewis acid-promoted addition to aldehydes.⁵

This seemingly common feature occurs, however, only as long as the PDT has *E*-geometry. We describe herein that (Z)-PDT¹ preferentially added at the internal γ -position to aldehydes in the presence of an appropriate Lewis acid (Scheme 1).

Scheme 1 Reagents and conditions: Lewis acid, -78 °C, CH₂Cl₂; Ar = *p*-nitrophenyl

When (E)-penta-2,4-dienyltin, (E)-1, was allowed to react with *p*-nitrobenzaldehyde in the presence of a Lewis acid,† addition at the ε -position of 1 preferentially occurred (Table 1, entry 1) as already described.⁴ A similar result, but with a little less ε -preference, was observed for (E)-hexa-2,4-dienyltin, (E)-2 (entry 3).

In contrast, and to our surprise, the corresponding (Z)isomers (Z)-1 and (Z)-2, under the same conditions were found to undergo preferential addition at their γ -positions (entries 2 and 4). This unusual γ -preference also occurred with high selectivity in the reaction of 2-substituted PDT, (Z)-2-methylpentadienyltin, (Z)-3, and the aldehyde (entry 5). However, (Z)-2-tert-butylpentadienyltin, (Z)-4, exhibited ε -selectivity rather than γ -selectivity (entry 6).

In comparison, and as reported earlier,²⁴ when the nucleophile was homologous PDS 5, both (E)- and (Z)-isomers exhibited ε -selectivity to give a conjugated diene (entries 7 and 8).

The above results highlight the unexpectedly high and previously neglected reactivity at the γ -position of (Z)-PDTs. Tin is more electropositive than silicon, so PDTs are expected to react more anion-like than PDSs. In fact, similar regioselectivity was observed in the protonation of anionic pentadienyllithiums; (Z)- or 'U'-ones gave 1,4-dienes and (E)- or 'W'-ones gave conjugated 1,3-dienes preferentially, presumably owing to electronic factors.⁷ Consequently, (Z)-PDTs, (Z)-1-3, afforded the γ -adducts via the antiperiplanar transition state C⁸ shown in Scheme 2. In contrast, when (E)-PDTs were employed, the

transition state A, which would give γ -adducts, was disfavoured as a result of electronic and steric features, whilst the favoured and less congested transition state **B** afforded the ε -adducts. Even in the reaction of (Z)-PDT, steric hindrance arising from a bulky 2-substituent (e.g. $\mathbb{R}^2 = \mathbb{B}u'$) gave rise to transition state **D** and afforded the ε -adduct. For PDS, a less anionic and less reactive nucleophile than PDT, the electronic factor may be less dominant and the transition state may be more product-

[†] Reactive *p*-nitrobenzaldehyde was used as a substrate. A less reactive aldehyde such as cyclohexanecarbaldehyde did not accurately reflect the reactivity of (Z)-PDTs, its slower reaction causing concomitant Lewis acid-catalysed isomerizations from (Z)-PDT to (E)-PDT.⁶

Table 1 Lewis acid-promoted reaction of (E)- and (Z)-pentadienyl-tins and -silanes

	PDT (PDS)	R ¹	R ²	М	Lewis acid	Product ratio			
Entry						3	γ	α	Total yield (%)
 1	(<i>E</i>)-1	н	н	Sn	TiCl ₄ -Et ₃ O ^a	79	21		92
2	(Z)-1	н	Н		4 2	24	76		94
3	(E)-2	Me	Н		BF ₃ ·OEt ₂	60 ^b	38 °	2	98
4	(Z)-2	Me	н		5 2	25°	74 ^{c.}	1	95
5	(\overline{Z}) -3	Н	Me			14	82 ^b	4	97
6	(Z)-4	Н	Bu'			88	3°	9	89
7	(\overline{E}) -5	н	н	Si		100	00		45
8	(Z)-5	Н	Н			100	0		59

^a Et₂O (ca. 2 equiv.) was added to suppress transmetallation. ^b One diastereoisomer (probably syn-isomer) was selectively formed. ^c Diastereoisomeric ratio was not determined.

like, the sterically more congested γ -adduct thus being disfavoured regardless of the double bond geometry.*'†

So far, the regiospecificity of E/Z-pentadienyl metal reagents seems to have been neglected, that described here of PDTs appearing to be the first example reported.¹⁰

Experimental

Typical Reaction Procedure.—To a stirred, cooled $(-78 \,^{\circ}\text{C})$ solution of an aldehyde (0.3 mmol) in CH₂Cl₂ (5 cm³) was added a Lewis acid (0.6 mmol) under nitrogen. After a few minutes, PDT (0.45 mmol) was added. When the reaction was complete, it was quenched with 2 mol dm⁻³ hydrochloric acid. The resulting mixture was extracted with ether. The organic layer was washed with saturated aqueous NaHCO₃ and brine, dried (Na₂SO₄) and concentrated under reduced pressure. The products were isolated by TLC.

* In the reaction of (Z)-PDS with acyl chlorides, ready formation of γ -adducts was reported.⁹ Steric repulsion in the (Z)-diene was considered to cause insufficient conjugation of it, thus limiting the ε -attack. † No Lewis acid-catalysed isomerization of PDS was observed.

References

1 Y. Naruta, Y. Nishigaichi and K. Maruyama, J. Org. Chem., 1991, 56, 2011, and references cited therein.

- 2 (a) A. Hosomi, M. Saito and H. Sakurai, *Tetrahedron Lett.*, 1980, 21, 3783; (b) D. Seyferth and J. Pornet, *J. Org. Chem.*, 1980, 45, 1721; (c) J. Pornet, *Tetrahedron Lett.*, 1980, 21, 2049; (d) D. Seyferth, J. Pornet and R. M. Weinstein, *Organometallics*, 1982, 1, 1651.
- 3 Y. Naruta, Y. Nishigaichi and K. Maruyama, J. Org. Chem., 1988, 53, 1192; J. Chem. Soc., Perkin Trans. 1, 1991, 831; Y. Nishigaichi and A. Takuwa, Chem. Lett., 1990, 1575.
- 4 M. Koreeda and Y. Tanaka, *Chem. Lett.*, 1982, 1299; Y. Naruta, N. Nagai, Y. Arita and K. Maruyama, *Chem. Lett.*, 1983, 1683.
- 5 M. Pereyre, J.-P. Quintard and A. Rahm, in *Tin in Organic Synthesis*, Butterworths, London, 1987.
- 6 Y. Nishigaichi, A. Takuwa, K. Iihama and N. Yoshida, Chem. Lett., 1991, 693.
- R. B. Bates, D. W. Gosselink and J. A. Kaczynski, *Tetrahedron Lett.*, 1967, 199; R. B. Bates, S. Brenner, C. M. Cole, E. W. Davidson, G. D. Forsythe, D. A. McCombs and A. S. Roth, *J. Am. Chem. Soc.*, 1973, 95, 926; H. Yasuda, Y. Ohnuma, M. Yamaguchi, H. Tani and A. Nakamura, *Bull. Chem. Soc. Jpn.*, 1979, 52, 2036.
- 8 Y. Yamamoto, H. Yatagai, Y. Naruta and K. Maruyama, J. Am. Chem. Soc., 1980, 102, 7107.
- 9 T. Hayashi, Y. Matsumoto and Y. Ito, Chem. Lett., 1987, 2037.
- 10 Y. Naruta, Y. Nishigaichi and K. Maruyama, Chem. Lett., 1988, 225.

Paper 2/04588E Received 26th August 1992 Accepted 26th August 1992